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S U M M A R Y  
In the case of constant film thickness, Reynolds' equation of plane lubrication theory reduces to Laplace's equation 
for the pressure distribution. In this paper, non-constant forms for the film thickness are constructed for which reduction 
of the two-dimensional problem to consideration of Laplace's equation is possible. This is achieved via Baecklund-type 
transformations; the approach is somewhat analogous to one adopted in gasdynamics and recently in other areas of 
Continuum Mechanics to obtain canonical forms for systems descriptive of physical situations. 

1. Introduction 

Baecklund-type transformations have been employed in many physical contexts in recent 
years. Ames [1] gives an introductory account and discusses applications to the theory of 
propagation of optical pulses. A generalization of the concept of Baecklund transformation 
has been utilized in gasdynamics to reduce the hodograph equations to canonical form in 
subsonic, transonic and supersonic flow (Loewner [2], Power, Rogers and Osborn [3]). A 
similar approach may be adopted for hodograph equations descriptive of the propagation of 
large amplitude disturbances in non-linear elastic media. Thus, reduction of the hyperbolic 
system to an associated wave equation may be sought (Rogers [4]). This reduction may be 
achieved for certain multi-parameter non-linear stress-strain laws recently introduced by 
Cekirge and Varley [5] in another manner. It may also be shown that Weinstein's correspond- 
ence principle can be generated as a particular Baecklund transformation of the Stokes- 
Beltrami equations (Clements and Rogers [6]). An iterated form of the correspondence prin- 
ciple may be used to solve certain boundary-value problems involving axially-symmetric 
deformations of incompressible isotropic linear elastic materials with solid inclusions. Other 
applications of generalized Baecklund transformations have been made for example in 
elastic-plastic wave propagation (Rogers and Clements [7]) and wave propagation through 
inhomogeneous elastic media (Clements and Rogers [8]). The present paper establishes new 
applications in plane lubrication theory. In particular, Weinstein's correspondence principle 
is iterated to generate the solution of Reynolds' equation for certain three-parameter forms of 
the film thickness. 

2. Reynolds' equation 

Under the usual assumptions of hydrodynamic lubrication concerning the flow of a thin film 
of incompressible oil between two neighbouring surfaces in relative tangential motion, the 
pressure distribution within the film satisfies Reynolds' equation 

C~a ( h3lA-l •p + ~yy0 (h3//- 1 c3~Py p) = 6 U d~'dh (2.1) 

where/~ is the oil viscosity, h is the film thicknes s at any point and U is the speed of the moving 
surface in the direction of the x-axis. 

Introduction of the non-dimensional variables 

* Present address: Department of Mathematics, Old Dominion University, Norfolk, Virginia 23508, USA. 

Journal of Engineering Math., Vol. 8 (1974) 209-217 



210 C. Rogers 

x Y h = h ph2o 
= 7 '  ; = 7 '  ho '  ~ - 1 2 ~ u l  (2.2) 

where l and h0 are representative lengths reduces Reynolds' equation to (if # is assumed 
constant) 

~ ~ +~ h 3  -2d~ 

If the surfaces are parallel, as is the case for many hydrostatic bearings, then h = constant and 
(2.3) becomes Laplace's equation. However, when the film thickness is variable, it is of interest 
to determine conditions under which (2.3) may be transformed to Laplace's equation. Here it is 
shown that such a reduction is possible for a wide class of forms for h(~). Moreover, the forms 
involve arbitrary parameters available for approximation purposes. Methods analogous to 
those adopted here have proved of great importance in, for example, gasdynamics ; they have 
led to such important concepts as the K~rmfin-Tsien approximation of subsonic flow. In that 
instance, however, the reduction to Laplace's equation was in the hodograph plane. Here, 
there is no such disadvantage, the reduction being achieved in the physical plane. 

Before proceeding to the transformations, it is convenient to represent the lubrication 
equations in a matrix form. Thus, if ~ is introduced according to 

p = rc - �89 1 h- 2 d2, (2.4) 

equation (2.3) reduces to 

0. (2.5) 

The latter may, in turn, be identically satisfied by introducing q5 (~, y) defined via the matrix 
equation 

This provides a convenient form for the application of Baecklund-type transformations. 
Specifically, matrix transformations are introduced in the subsequent section with a view to 
the reduction of (2.6) to a form associated with the Cauchy-Riemann equations, namely 

~**)x .=  ( _ :  10)( :S) , . .  (2.7, 

3. The matrix transformations 

The system (2.6) may be written in the form 

O~ = H ~ y ,  (3.1) 

where (0 :) 
= , H = h_ 3 . (3.2), (3.3) 

Matrix transformations of the type 

f2x. = A I O ~ + B I O  IAll r 0 

f2,* = A z O y + n z O ,  Ih21 r 0 (3.4) 

x * = ~ ,  y * = y  

are sought which transform the system (3.1)-(3.3) to the elliptic canonical form (2.7), that is 

Journal of Engineering Math., Vol. 8 (1974) 209-217 



On reduction properties in the theory of lubrication 211 

Q** = H Q, , ,  (3.5) 

where (;) (:;) f2* = H* = (3.6), (3.7) 

In (3.4), As, Bs, j = 1, 2 are 2 x 2 matrices with entries arbitrary functions of the variables ~, y. 
Imposing the commutativity conditions 

O ~  = ~ y ~ ,  * �9 f2x*r = Qr*x* (3.8), (3.9) 

on the relations (3.4), it is seen that 

(A~ - A2) ~ +  ( A , , ~ -  B2) O~ + (B~ - A~,~) O~ + (B~ s - B~,~) 0 = 0 .  (3.10) 

In view of (3.1), the matrix equation (3.10) is identically satisfied by setting 

A1 = A 2 ,  (3.11) 

(A LY-- B2) H + B 1 -- A2,.~ = 0 ,  (3.12) 

BI,~-B2, ~ = 0 .  (3.13) 

Further, from (3.4) it follows that 

t?,  ~ , , ~ ,  = A ~ [ O ~ - A I ~ H * A I O ; ] + ( B ~ - H * B z ) ~  X *  - -  JtJt ~ y .  

so that, setting 

AXlH*Aa  = H ,  B~ = H ' B 2 ,  (3.14), (3.15) 

the system O~ = Hf2y is transformed to the associated system * * * f2~, = H Or, and conversely by 
the transformations defined by (3.4). Thus, summarizing, it is seen that 

O~ = Hf2y~--~ 12~* = H* f2y* (3.16) 

via the matrix Baecklund-type transformations defined by (3.4) subject to the conditions 
(3.11)-(3.15). In particular, if A~= A2 and B t, B2 are taken to be independent  of y, (3.13) and 
(3.15) indicate that B1 and B 2 a r e  necessarily constant matrices, while (3.12) reduces to 

A I . ~ - H * B 2 + B 2 A l l H * A 1  = 0 .  (3.17) 

Moreover, the property of zero principal diagonal elements is preserved under the mapping 
H ~ H *  if (but not  only if) A 1 assumes the diagonal form 

A1--  
a 

in which case 

(a  ah0 2) H . = A ~ _ ~ A ~ t  = 0 a~ /a (H ~ [h~]). 
2 - 2  1 2hl/ax 

Inspection of (3.17) shows that B 2 is necessarily of the form 

e 2 = 

and the matrix equation (3.17) yields 
i i* 2 (at ) ._he bl 2, 1 t 2 + h 1 b 2(al/a2) = O, 
2 2 ,  1 1_/~1,h2 (a2)e-hl  b2-'~2 ~t (a2/al) = 0 .  

The latter pair of equations combine to show that 

Det A 1 i 2 = a l a  2 = c o n s t a n t = 2 ,  2 # 0  

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3 .23)  
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so that the system (3.21), (3.22) may be reduced to (3.23) together with a single Riccati-type 
equation in either al or a 2. In particular, the Riccati equation in al is, on setting h~* = + 1, 
h e* = - 1, 

( a l )~+~(a l )2 + /~= 0 ,  ( ~ = - b ~ 2  - 1 ,  j ~ = - b 2 ) .  

Hence, 

(a) if ~ = 0: a I = - f l2+(5  

(b) if f i = 0 :  aI = 1/(~2+e) 

(c) if fl/c~ >0 :  al = (fi/~)~ cot {( /~/@(,~+ 4)} 

(d) if/~/c~ < 0: al = (-f i /=)  -~ tanh {(-fl/~)~(c~2+ {)} 

where 6, ~, 3, */are arbitrary constants of integration. 
Now, (3.19) shows that 

h(~) = 2~*(aI) -~ (3.24) 

whence, it is concluded that reduction of the Reynolds'  system defined by (3.1)-(3.3) may be 
achieved when h(~) adopts one of the forms 

(a) ~ [ - / ~ + a ] - ~  

(b) ~ D~ + ~]~ 
(c) ~ (~//~? tan~ {(/~/~? (~x+ 3)} 
(d) a+(- ~//~? coth~ {(-/~/~)~ (~X + 3)}. 

In fact, (a)-(d) are not the only film thickness forms for which Reynolds' equation may be 
reduced to Laplace's equation via Baecklund transformations. In particular, in the next 
section, it is noted how repeated application of such transformations can lead to new results. 

4. Iterated Baeeklund transformations 

In a recent paper on Baecklund-type transformations of the Stokes-Beltrami equations 
(Rogers and Kingston [9]) it was demonstrated that matrix systems 

may be linked to associated systems 

(0 o*) H* = ( t eR)  (4.2) 
X ~ - t  . 

s = H Oy,, 

in the six cases 

(i) s =  t ,  

(iv) s = t + 2 ,  s # l  

(ii) s = - t ,  (iii) s = t -  2 ,  s r - 1 

(v) s = - t - 2 ,  s r  (vi) s = - t + 2 ,  s r  

In particular, the invariant transformations (i) contain a result due to Parsons [10] as a special 
case. Further, (iii) generates a four-parameter class of correspondence principles extending 
Weinstein's correspondence principle (see [6]). Weinstein's principle has had a number of 
interesting physical applications, notably to the theory of shafts of revolution under torsion. 
Iterated versions of the principle have been used by Burns [11] to systematize the study of 
problems involving Stokes' flow of a viscous fluid past such bodies as a spindle, lens or torus 
and in [6] to solve boundary value problems involving rigid inclusions in incompressible 
elastic materials. 

Consider the Baecklund-type transformations of the type (3.4) with the specializations (see 
[9]) 
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A I = A 2  = ( _  0 
2dyS + 1 

3 B2 = U/I " 

2dos ) 
B 1 

These transformations link the Stokes-Beltrami system 

__~s+2 

with the associated system 
/ \ 

H Or., = - - x  *s 0 ,]' 

Explicitly the transformations yield 

~b~* = 2dff ~- ~ fie, 4"* = 2df-~-  ' 

p** = - 2 d 2  ~+a qS~- 2d(s+ 1)X~,  

Pr+2d(s+ 1)~ ' / 

p** = _ 2d,2S + 1 ~ 

(x* = if,  y * = y )  

(_ 2d(s +01) 2 - , -  2 00)' 
(4.3) 

(4.4) 

(4.5) 

(4.6) 

The latter pair of relations give that 

p. = _ 2d2S+ 1 ~) , (4.7) 

or, in the notation of Weinstein [12], 

i0{S} = C'yS+l~{sq-2}, ( C - - 2 d ) .  (4.8) 

The important relation (4.8) is known as Weinstein's correspondence principle; its significance 
lies in its use in the simplification of certain boundary value problems (see [6], [1 1]). It has 
been proved by Kingston [13] that by repeated application of the Baecklund transformation 
(4.6) with 2d= +1, the general solution of the system (4.1) with s=2N (N=0, 1, 2 . . . .  ) may 
be obtained in the form 

_ ~ + i f _ 2 N ~  = ~ (-1)*2"(2N-r)!y_2N+r) ( N - r )  N } 
r=o r ! ( N - r ) !  { (2N- r )  q~(r)(~) (2N-r )  ~(r)(~) =-A(f, 29)(4.9) 

~ N ( N - r )  O) 
2 N - - r ) -  1, (2N~--r-)- 0 whefi r = N =  

where ~(r)(~)_ 0r q5 (~)/OU, �9 (~) is an arbitrary analytic function of ~ = 2 + iy and ~(~)(~) is the 
complex conjugate of ~(~)((). 

Hence, referring to (3.1)-(3.3), it is seen that the general solution to Reynolds' equation may 
be obtained when the film thickness h (2) adopts the form (on appropriate scale change) 

[a~+b] -2N/3 , N = 0, 1, 2 . . . .  (4.10) 

The case N = 0 corresponds to the usual constant film thickness assumption in which (3.1)-(3.3) 
becomes the Cauchy-Riemann system. The case N = 1 yields the form (a) of the preceding 
section. The cases N = 2, 3, ... represent new forms. 

Furthermore, it is observed that the simple transformation 

~-~p*,  ~-~ -~b*, (4.11) 

transforms the system (4.5) to the system 

x*-" Qt = (4.12) ' ~ t  ' 

Journal of Engineerin9 Math., Vol. 8 (1974) 209217 



214 C. Rogers 

so that the solution of the latter system is given by 

pt+iff_2~qS,= - ~, ( - 1 ) ' 2 " ( 2 N - r ) !  !~(N-r )  (b'"(() N (b(,,({)} 
~=o r ! ( N - r ) !  x7 2N+' t(2N--r- ) ( 2 N - r )  

- A ( ~ , ~ ) .  (4.13) 

This provides the general solution to Reynolds' equation when the film thickness adopts the 
three-parameter form 

[a,2+b] zn/3 , N = 0, 1, 2 . . . .  (4.14) 

The case N = 1 is form (a) of the preceding section. 

5. Integration of Reynolds' equation in cases (c) and (d) 

In the last section, Reynolds' equation was solved when h(ff) may be approximated by either 
of the forms (4.10) or (4.14), the cases (a), (b) of section 3 emerging as special cases. It remains to 
solve Reynolds' equation for the forms (c), (d) of that section. 

The transformations under consideration are 

0 ' 0 

0 ~ 0 

o / \ ~ / '  
x * = ~ ,  y * = y  

where a ~ adopts either of the forms (c), (d). These cases are now investigated. 
I n  case (c), the system (5.1) yields 

(o* = (fl/~)~ cot {(fl/a)~(~ff+{)} qS~+b~qS, ] 
(o* = (fl/~)* cot {(B/=) * (=~ + r ~ +  b lf i ,  . 

p* = 2 (~/ fl)§ tan { (fl / ~)r (~X + {)} fi~- b~ fi, 
p* = 2 (~/fi)~ tan { (fl/~)~ (ot,2 + {)} ~ + b 2 (/5. 

Now, from (2.7), 

~b* = f ( 0 + f ( ( ) ,  P * =  i [ - f ( O + f ( ( ) ]  

where f is an arbitrary analytic function of ~ = ~ + i y .  Hence, (5.2)L 3 give that 

O 
~ [(~ cos {(fi/e)l (aft+ ~)}] = (e/fl)l [ f '  + f ' ]  sin {(fl/a)} (12+ 4)} 

O~ [iO sin {(fl/~)} ( ~  + Q}] = i(fl/o~) ~ 2-* [ - f '  + f ' ]  cos {(fl/~)~ ( ~  + r 

so that, on integration, 

(5.1) 

(5.2) 

(5.3), (5.4) 

(5.5) 

(5.6) 

(o = (o(fl) *~ [ ( f + f )  tan { (fi/oO} (a,Y + {)} - 
- (~fl)t sec {(fl/~)�89 (aft + {)} I ( f + f )  cos {(fl/~)~* (~ff + 4)} dff] 

+ Y1 (Y) sec { (fl/~)~ ( 7 s  ~)} ,  (5.7) 

= i(fl/~)�89 l [ ( _ f + f )  cot {(fl/~)~ ( ~ +  4)} + 

+ (~fl)~ cosec { (fl/~)~ (~X + 4) } S ( - - f + f )  sin { (fl/~)~ (~Y~ + ~) dX] 

+ Y2 (Y) cosec {(/~/~)~ (~X + ~)}, (5.8) 
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where I71, Y2 are functions of y to be determined. Thus, employing the relations 

~ = [2/(aI) 2]/~, ~ = - [(aI)2/2] qS~-, 

it is seen that 

whence, since cq? > 0, 

Yx = ~ cosh [(afl)~y] +/~ sinh [(afi)~y], 

Yz = 2-  ~ (fl/a) [~ sinh [(afl)~ Y] +/? cosh [ (eft) ~ Y] ] ,  

where ~,/~ are arbitrary real constants of integration. 

In case (d), from system (5.1), 

(o* = (-- fl/ot) } tanh { ( -  fl/a) ~ (a~ + 4) } (o~ + b~ ~ , 

4)* = ( -  fi/a) ~ tanh { ( -  fl/a) ~ (~Y~ + 4)} qS~ + b2 ~ ~, 

p* = 2(-- a/fl) ~ co th { ( -  fl/a) ~ (aft + 4) } P.~- b ~z P,  

p * = 2 ( -  e/fi)~ coth { ( -  fi/a) ~ ( ~  + 4) } P, + b) ~ ,  

so that, in view of (5.3), (5.4), relations (5.11h, a yield 

02 [~  sinh { ( -  fl/e)~ (c~x + 4) } ] = ( - a/fl) ~ [ f + f ' ]  cosh { ( -  fl/a) ~ (a2 + 4) } ,  

215 

(5.9) 

(5.10) 
(5.11)' 

(5.12) 

(5.13) 

O~ [-fi cosh {(-  fl/~)4(a~ + Q}] = i ( -  fi/a)*2 -1 [ - f '  + f ' ]  sinh {(-  fl/c~)~(c~+ 4)}. (5.14) 

On integration, these show that 

= ( - a/fi) ~ [ ( f + f )  coth { ( -  fl/a) } (12 + ~)} - 

- ( -  cq?) �89 cosech { ( -  fl/~)~ ( ~  + 4)} S ( f + f )  sinh { ( -  fl/a) } ( ~  + 4)} d~] 
+ Y3 (9) cosech r (5.15) 

p -- i ( -  fl/a) ~ 2-1 [ ( _ f + f )  tanh { ( -  fi/a) ~ (~2 + ~)} - 

- ( - aft) ~ sech {( -  fl/a) ~ (a~ + 4)} S ( - f + f )  cosh {( - fi/a) ~ (12 + 4)} dE] 
+ Y, (9) sech {(-fl/a) ~ (12+ 4)}, (5.16) 

where Y3, I14 are functions of y satisfying, by virtue of the relations (5.9) 

Y3 = - i2~�89  -~ Y~ , Y~ = - i 2 a ~ f i - ~  Y4. 

Thus, since eft < 0 in this instance, 

Y3 = 7 cos [ ( -  ~fl)~y] + 3 sin [ ( -  c~fl)�89 , (5.17) 

Y4 = 2-1 (fl/a) [~ sin [ ( -  afl)~y] - 3  cos [ ( -~f l )~y] ] ,  (5.18) 

where ~, 3 are further real constants of integration. This completes the integration of Reynolds' 
equation when the film thickness may be approximated by a form corresponding to case (c) 
or (d). 

6. Reduction in gasbearing theory 

The work of the preceding sections has been concerned with a Reynolds' equation for an 
incompressible lubricant of constant viscosity. It is of importance to enquire as to whether 
any kind of reduction is available for the more realistic situation in which compressibility and 
variable viscosity effects are present; an indication of a possible approach is given below. 
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If the density p and viscosity # of the lubricant are variable, the two-dimensional Reynolds' 
equation becomes, under steady conditions, 0@ 0~) 0 Ip 0~) 68 

~X hakt-1  + ~ h 3 ~ - i  = ~x (pUh)  (6.1) 

If we set 

0p __ h2 0p u = 6 # U - h  2 0~ ' v = --0y, (6.2), (6.3) 

it is seen that (6.1) allows the introduction of a stream function ~,(x, y) according to 

0~, Off (6.4), (6.5) u = (ph) - i  kt fffY' v = - (ph) - '  It 0 ~ '  

where, from (6.1), ~ satisfies 

0~ + ~yy = 0. (6.6) 

The latter equation is amenable to the techniques presented earlier. Thus, it may be reduced to 
Laplace's equation by means of Baecklund-type transformations subject to the film thickness 
being approximated by certain forms ; of course, the same analysis is in particular, possible for 
the case of incompressible constant viscosity lubricant. 

If, for example, the viscosity of the gas lubricant is characterized by a specified # (p) relation- 
ship and the gas law is of the form p = p (p), once the general solution for r (x, y) corresponding 
to a form h(x) has been obtained from the reduction of (6.6), the problem becomes that of 
determining p from (6.2)-(6.5) satisfying the prescribed boundary conditions. In general, the 
pressure will be prescribed along known geometric boundaries (see Milne [-14]). The solution 
of specific boundary-value problems utilizing the methods presented here will be the subject 
of a future paper. 
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